

High End Computing and Computation Working Group

HECC Strategic Plan Overview

Information for

Presidential Advisory Committee

Co-Chairs: Lee Holcomb, NASA Paul H. Smith, DOE

June 24, 1997

Briefing Information 1 6/16/97

Vision and Strategy

Vision

- Maintain U.S. leadership in high-end computing (HEC)
- Promote effective use of HEC for government, industry, academic and broad societal applications

Strategy

- Community-developed HECC R&D agenda
- Agency programs coordinated through CIC R&D process
- Support spectrum of activities from research to mission-driven
- Promote jointly-funded/managed projects
- Sustain on-going agency investments, especially in Applications and Infrastructure, and pursue new augmentations in high priority areas
- Assign lead roles to agencies for specific focused HECC efforts as in NGI

Briefing Information 2 6/16/97

Nation Needs High End Computing

- Maintain U.S. leadership in high end computing (HEC)
- Support critical federal government mission needs
 - national security
 - weather modeling, disaster warning & relief
 - aeronautics and space exploration
 - energy research
 - basic science and engineering
- Promote insertion of HEC in U.S. industry sector for U.S. competitiveness
- Promote broad societal applications
 - healthcare
 - education and lifelong learning
 - long-term environment and energy management
 - human services
 - crisis management

Briefing Information 3 6/16/97

HECC Thrusts

1. System software technology

Major improvements in usability and effectiveness of TeraFLOPS-scale systems across a wide range of government, industry and academic applications

2. Leading-edge research for future-generations computing

Research and technology necessary for PetaFLOPS-level computation & exabyte-level mass storage.

3. Incorporation of technology into real applications

First use of HECC technologies into agency applications, the practice of highperformance computational science and the required underlying algorithms

4. Infrastructure for research in HECC

Research computational facilities, large-scale test systems and high-performance networks to maintain a state-of-the-art infrastructure for HECC.

Briefing Information 4 6/16/97

Thrust 1: System Software Technology

for High-End Computing

<u>Goal:</u> Achieve major improvements in usability and effectiveness of TeraFLOPS-scale systems across a wide range of government, industry and academic applications

Medium range technology development (< 3-5 years)

Develop tools and system software for use on distributed, and heterogeneous high-end systems which improve:

scalability throughput speedup portability programmability

R&D investment focus:

- Languages and compilers
- Debugging and performance tools
- Programming interfaces and libraries
- Operating systems and I/O
- Common framework and infrastructure

Briefing Information 5

Thrust 2: Leading-edge research for future-generations computing

<u>Goal:</u> Support research and technology necessary for PetaFLOPS-level computation and exabyte-level mass storage.

Long range research (> 5 years)

R&D investment focus:

- Innovative technology
 - Software
 - Hardware including device components
 - Models of computation
- Systems and Architecture
- Laboratory demonstration prototypes

Briefing Information 6 6/16/97

Thrust 3: Technology into real applications

Goal: Incorporate first use of HECC technologies into agency applications, develop the practice of high-performance computational science and the required underlying algorithms, to ensure that key applications will be able to run at full potential.

R&D Investment focus:

- HECC Applications (current)
 - Grand Challenge Teams (DOE, NASA, NSF, NOAA, EPA)
 - Scientific visualization and data management
 - Cross-cutting technologies
- Computational Science (near-term 1-3 years)
 - Develop as third methodology and integrate to mutually complement theory and experiment
- Algorithm Improvement (3-5 years)
 - Application parallelism and latency

Briefing Information 7 6/16/97

Thrust 4: Infrastructure for research in HECC

Goal: Ensure that the full potential of research computational facilities, large-scale test systems and high-performance networks are realized by planning and coordinating the design, implementation and maintenance of a state-of-the-art infrastructure for HECC. Through coordination and an active information exchange, ensure a balanced infrastructure with maximum computational strength and bandwidth.

Support current research agenda with research facilities built on large-scale test systems and, on large-scale, high-performance networks

R&D Investment focus:

- Research Facilities
- Access to large-scale test systems
- Build on large-scale high performance networks

Briefing Information 8 6/16/97

HECC Major Accomplishments

- Established scalable parallel processing as the commercial standard for high performance computing
- Enabled the technology base for the \$2 billion middle range high performance market which expanded access to high performance computing, while reducing costs to the government
- Invented and proved massively parallel systems as effective high-end computing devices
- Enabled the near-term computing technology for DOE's ASCI program
- Created the scientific base for High End Computing, including trained scientists and engineers, new architectural approaches and next-generation technologies

Briefing Information 9 6/16/97

Questions for Presidential Advisory Committee

- What role should the federal government play in high-end computing and computation?
- What steps should the federal government take to best work with industry and academia toward providing for these national needs?

Briefing Information 10 6/16/97